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\’ ABSTRACT M .

. The report presents 2 low-Froude-number asymptouc
expansion for the far- ﬂeld wave-amplitude function defined within
the Neumann-Kelvin theoretical framework, This &ymptotie<=..._.

° expansion provides a simple analytical approximation defined —
explicitly in terms of the geometrical characteristics of the ship {(Th ™
o e o = s s o L] i
hull and the disturbance velocity vector.{Fhe low-Froude-number LAY

analysis Presented-in-this-reporPshows that the wave resistance
and fhe far-field wave pattern of a ship(strongly /depend jpn the
shape of the hull, notably the presence of flare and the shape of
the waierline at the bow and théstern. Fr-particuiarythe gnalysis
_predicts that the nondimensional wave-resistance coefficient is
O(P@), where F is the Froude number, for a ship form with a

' = “region of flare, O(F®) for a ship form that is wall sided
e “/ everywhere and has either a bow or a stern (or both) that is (4 the CTh powe
b neither cusped nor round, and O(F6) for a wall-sided ship form I
with both bow and stern that are either cusped or round.
/Z—er)gnalysw also shows that the relative importance of the
nonlmear terms in the free-surface boundary condition depends
on the shape of the hull. Specifically, the contribution of the _
. nonlinear terms in the free-surface boundary condition to the far- /n gy
Sfield wave-amplitude function, K, is found to be O(FJ),
irrespectively of hull form ; his contribution must be
. compared with the result predicted by the usual Neumann-Kelvin
theory, in which the free-surface boundary condition is linearized.
This linear theory predicts that K is O(F) for a ship form having
a region of flare, O(F2) for a ship form that is wall sided
everywhere and has either a bow or a stern (or both) that is
neither cusped nor round, and O(F3) for a wall-sided ship form
with both bow and stern that are either cusped or round. The
contribution of the nonlinear terms in the free-surface boundary
condition is then asymptotically negligible for ship forms having a
region of flare or a sharp wedge-like bow or/and stern, as is the
case for a majority of ships (including naval ships).
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ADMINISTRATIVE INFORMATION

This study was funded under the David W. Taylor Naval Ship Research and
Development Center’s Independent Research Program, Program Element 61152N,
Project Number ZR02301, Task Area ZR0230101, Work Unit 1542-108.

INTRODUCTION

. The wave resistance of a ship advancing at constant speed in calm water and the
amplitude of the transverse and divergent waves in its far-field wave pattern are
defined in terms of the far-field wave-amplitude function, K(t), by means of simple
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expressions, which may be found in Noblesse [1,2] for instance. The function K(t) is
given by the sum of two integrals, namely a surface integral over the ship’s mean
wetted-hull surface and a line integral along its waterline, involving the disturbance
velocity potential in their integrands. An approximate expression for the function K(t),
valid for sufficiently small values of the Froude number, was recently obtained in
Noblesse [3] by approximating the hull-surface integral by a line integral along the
ship waterline and combining the latter waterline integral with that already present in
the original unapproximated expression for the function K(t). The resulting low-
Froude-number approximate expression in terms of a waterline integral obtained in [3]
is now given.

Nondimensional coordinates (xy,z2) = (X,Y,Z)/L, where L is the length of the
ship, attached to the moving ship are defined. The z axis is taken vertical and
pointing upwards and the x axis is chosen in the ship centerplane (port-and-starboard
symmetry is assumed here) and pointing towards the bow. The flow disturbance due
to the ship is represented in terms of the nondimensional velocity potential ¢ = ®/UL,
where U is the speed of the ship.

The positive half of the mean waterline is represented by the parametric
equations

X = Xo(d) and y = yp(d), (la,b)
where the parameter A varies between its bow and stern values, that is
Ag<A<ig. (Io)

In the vicinity of the mean free surface, the positive half of the hull surface is
represented by the parametric equations

x = X(d) + zx;(0) + z2%,(0) + ..., (2a)
y = Yo + zy;) + 22y, + ..., (2b)
where A€ A<iAgandz<0. (2¢)

The velocity potential $(A,z) on the hull surface in the vicinity of the plane z = 0
likewise is expressed in the form

¢ = ¢o(d) + z6;() + z2(1) + ... 3)

Differentiation of the functions x,(A), y,(A), $,(A) with respect to the parameter A is
denoted by the superscript ' ; thus, we have x5’ = dxgy(A)/dA.



ﬁle following low-Froude-number approximation to the far-field wave-amplitude

function K(t) is given in [3]:
Kt)vq?(K,+ K_) as F~0,
where the port-and-starboard contributions K, are given by
K, = A:s exp (-i0,/qF?) a, dA.
In these equations, F is the Froude number defined as
F = U/@gL)2,
and we have
q = 1/p with p = (1+t2)!/2 and 0€ q< 1;

furthermore, 6, and a_ are the phase and amplitude functions given by

6, = xp £ty and

usai* + F2q2(uy)a,* + O(FY),

ay
where u, is defined as

u, = 1/[1-iq(x)#ty,)} ,
and the functions a;* and a,* are now defined.

The first-order amplitude function a;* is given by

a1t = yo'AL/(1+€2) + 2q(xp’ ttyp')u.)?B.éy

+ Cuép' + uD.$/(1+€2) + ip(y;99'-Yo'$1) »

where we have

€ = (Yo'x;—Xo'y))/u,
with u defined as

u = [(xo') + (¥o" )42,

and the coefficients A, B, C. and D_ are given by

4)

(4a)

()

(6a,b)

™
8)

9

(10)

an

(12)



A = [(1+pyy/u)(1-pyp'/u)+ €3] + i(pyy'/u)ly;(xo’ £typ') u+el, (13a) g
B, = q(y,Ftxy) + i(y;Xa3—x;¥2), (13b) :
C. = [Ft—p2xg'yg'/u?) + (pyg'/u)e(x;Xy’ +¥1¥o')/u(l+€2)]

+ i[yl(xo':ttyo’)/u+e][pxo'/u—(pyo'/u)s(xlxg'+y1y0’)/u(l+£2)] , (13¢)

D.. = [(xo'ttyp')/ull(1+ 2)(y tigt)uy +i(pyy/uey;] — (Pyo'/u)e(pyq'/u—ie). (13d)

The second-order amplitude function a,* is given by

ayt = —-y;’ + 2uy($omyt +¢ym* + $omy* —iyy'y,%)

+ 6i(u)?[bo(m Typ* +myTyst) + dimgtyst] — 12u,)3emo*(rs*)?, (14)

where we have

Yn© = d(Xyxtyy) and  mp* = py + iq(y, Rxy'), (15a,b)
with
Mo = XYo'—YiX' = &u, (16a) g
M1 = XY =Y1X) + 2(Xay0'-Ya%p') (16b)
Hy = X1Y2'=YiX2' + 2(Xay;1'=¥2%1') + 3(X3Yp'—Yy3%p') - (16¢c)

At a point where the phase of the trigonometric function exp(—iBi/sz) is
stationary, that is at a point (xg , yo , 0) where we have xy'+tyy’ = 0, the first-order
amplitude function a;* takes the form

ajr = =xeliyg’ +(py Fit)o' Fud;)/(1+ie) + ip(y199'-yo'$1) if xp'2tyy’ = 0. (17)

Furthermore, if the hull intersects the plane z = 0 orthogonally at a point of
stationary phase we have

a;t = iFlpyy’ 02¢o/3x2 if xo’#tyy’ = 0 andn, = 0, (18)

and the amplitude function a, then is of order F2.

The low-Froude-number approximation to the far-field wave-amplitude function
K(t) given by the waterline integral (4) is well suited for numerical evaluation, as is
shown in [3]. However, expression (4) can be simplified by applying the method of
stationary phase, which takes advantage of the rapid oscillations of the trigonometric
function exp(—iei/sz) in the low-Froude-number limit F = 0. General presentations
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of the method of stationary phase may be found in Erdé€lyi [4] and Copson [5]. A
brief presentation of this well-known method of approximation is included in the
following section for easy reference.

THE METHOD OF STATIONARY PHASE
Let us consider the integral

1= ft "2 explive()] a(o) dt, (19)
1
where v is a large positive real variable and the phase-function 6(t) is real; both the
phase-function 6(t) and the amplitude-function are assumed to be differentiable in the
range of integration [t; , t,] to the order required by the analysis. We seek an
asymptotic expansion of the integral (19) in the limit v —o0, Due to cancellations
between the positive and negative values of the rapidly-oscillating function exp{iv6(t)},
the major contributions to the value of the integral I stem from the immediate
vicinity of the end points t; and t, of the integration range, on one hand, and from
the vicinity of those points where the phase-function 6(t) is stationary, that is where
0'(t) = 0, on the other hand.

The contribution of the end points may be determined by supposing that the
phase-function 6(t) is not stationary within the integration range, that is we now
assume 6'(t) # 0 for t; < t < t. By integrating the integral (19) by parts, we may
obtain

L a® etz _ L pt2 e (2Y
“woo lt, 540 (7) @

Another integration by parts yields the two-term expansion

2+ ofd)

e’ t'l v

iv 8'(t) ty v2

which may be expressed in the form

vt o+ 4687+ oo

If the functions 6(t) and a(t) are sufficiently smooth at the end points, higher-order
terms in the asymptotic expansion (20) can be obtained by continuing the process of
integrating by parts.

Let us now assume that the phase-function 8(t) is stationary at the interior point
t = T, where t; < T <ty; we then suppose 8'(T) = 0, but 8" (T) # 0. The notation

f2 as v—> o, (20)
ty

0=6T),0" =0'(M), ... A=a),A =a(),.. 20
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will be used for simplicity. Let the function ¢(t) be defined as ¢(t) = &t) — &T) =
6&(t) — ©. By performing the change of variable Tt = t — T we may then express the
integral I in the form

I = exp(®) J, (22)
where J is the integral defined as

] = f_?l explivep(T+ 1)) a(T+1) dr 23)
witht = T - t;and 1) = ty — T, so that we have 1, > 0 and 1, > 0. By
expanding the functions @(T+ 1) and a(T+ 1) in Taylor series about the origin T = 0

we may obtain

@(T+1) = 120'/2 + 130""'/6 + T70W/24 + ..
and a(T+7) = A + 1A' + T2A'/2 + ... (24)

The change of variable (T+1) = u20''/2 yields

u? = 2 + 130"""/30" + #0W/120" + ...
By inverting this series we may obtain

T=u - u¥/3 + cu¥/3 + .., (25)
where the coefficients ¢, and c3 are given by

c; = ©/20" and ¢y = [5(©'"")2/30''-0@)/80"" . (26a,b)

By performing the change of variable ¢(T+1) = u20'//2 in the integral (23) we may
obtain

I = f_ ‘:lzl expliv0'u2/2] a(u) du, @7)
where the function a(u) is defined as

a(u) = a(T+1) dv/du. (28)
By using the Taylor series (24) and (25) in equation (28) we may obtain

a(u) = A + u(A'-2c,A73) + u(A'/2-crA’ +c3A) + ... . (29)
Equations (27) and (29) then yield

J = Aly + (A'=20,A/3)]| + (A""/2-chA'+c3A)], + ..., (30)

6
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where J, are the integrals defined as

I, = f ‘;2 explive’'u?/2] ub du . 31)
—Y

The change of variable v8''u2/2 = ¢t2, where ¢ is defined as

€ = sign @', (32)
yields
I, = @nje"|m+b2 | (33)

where the integral I, is defined as
t
I, = f : exp(ict2) tn dt
-4
with t; = (v|©''|/2)1/2u;. We then have t; = % as v = o, The integral I is given by
(=]
Iy~ [ - exp(iet?) dt = nl/2 exp(ien/4) . 34)
The integral I is not defined in the limit t; = o for n 3 1. However, the contribution

of the immediate vicinity of the point of stationary phase t = T to the integral (19)
can be evaluated by expressing the integral I, in the form

1y =/ " exptie?) 10 o) (35)

where the function o(t) is equal to 1 for finite values of t but vanishes exponentially
as t = o, By performing an integration by parts we may obtain

0 = <]
20, = e expliet?) o) |~ _ + ie /. expiet?) o) dt (36)
This yields
I, =0 (37)
since we have o(t) > 0 ast = + o and o’(t) = 0. We may similarly obtain
[« <] [ o] .
21, = —ie exp(iet?) to(t) I_m + ie f_ o Sxp(iet?) dlto(t)] . (38)
This yields

212 = lE‘/:: exp(istz) O(t) dt = iEIO 0 (39)
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as may be seen from Eq. (34). By using Egs. (34), (37) and (39) in Eq. (33) we may
obtain

Jo = Quv|©" )2 exp(ien/d), J; = 0, I = iJp/vO" . (40a,bc)
Equations (40a,b,c), (30) and (22) then yield

I~ 2n/v|©'']))/2 exp(ivO +ien/4) [A+iA5/2v+O(1/v2)] as v = o, (A1)
where A, is defined as

Ay = (A'"-2c5A' +2c3A)/0"".
Equations (26a,b) finally yield

A, = [(@76'") +a{5(8""")2/30"'— 641} /4(8"' )], 1 . 42)

The contribution of an interior point of stationary phase t = T, with t; < T <t,,
thus is given by Eq. (41), where ¢ is equal to the sign of 8''(T) and A, is defined by
Eq. (42).

An analytical approximation to the integral (19), valid in the limit v = oo, is then
given by the sum of the asymptotic expansion (20), corresponding to the contribution
of the end points t; and t,, and of the asymptotic expansion (41) for each interior
point of stationary phase t = T, with t; < T <'t,. Equations (20) and (41) show that
the contributions of the end points and of a point of stationary phase are O(1/v) and
O(1/v1/2) as v = o, respectively. The major contribution to the integral (19) therefore
stems from the end points only if there is no point of stationary phase within the
integration range. The asymptotic expansions (20) and (41) are not valid in the special
case when the end point t; or t; is a point of stationary phase, that is if we have
6'(t;) = O or 8'(ty)) = 0. In this special case, the two asymptotic expansions should
be replaced by the expansion given below.

Let us suppose that the phase-function 6(t) is stationary at the end point t; or t,,
so that we have 6'(t)) = 0, but 8''(t;) # 0. The contribution of this end point of
stationary phase may easily be obtained from the foregoing analysis for an interior
point of stationary phase. More precisely, the contribution of the end point t; is given
by equations (22), (30), (33) and (35) where the range of integration [ — o , o0] must
simply be replaced by [0, ] or [~ o, 0] if the phase is stationary at the lower or
upper end point t; or t,, respectively. It may then be verified that the values of the
integrals I, and I, become equal to half the values given by Egs. (34) and (39), and
the value of the integral I; is equal to Fie/2 where the upper sign (—) and the lower
sign (+) correspond to the cases when t, and t; are stationary points, respectively.
The contribution of the end point t; when the phase is stationary there is then given
by




I~ (n/2v|© "))1/2 exp(ivO +ien/4)
[A ¥ ic exp(—ien/4)A|/(2v)1/2 + iAy/2v + O(1/v3/2)) as v = o, (43)

where ¢ is equal to the sign of 8'' at the end point, the upper sign (-) and the lower
sign (+) correspond to the cases when the phase is stationary at the upper and lower
end point, respectively, A, is defined as

A = 2[(3"39'”/39”)/("|9”|)1/2]t=ti 0 44)

and A, is given by Eq. (42) with T = ;.

The asymptotic expansion (41) for the contribution of an interior point of
stationary phase t = T is valid if the first derivative 8'(t) of the phase function 6(t)
vanishes at the point t = T but the second derivative 8''(t) is nonzero there, as was
already noted. However, the asymptotic expansion (41) is clearly not valid if both the
first and the second derivatives vanish at t = T. An asymptotic expansion for the
contribution of an interior point of stationary phase t = T, with t; <T < t,, in the
case when 6'(T) = 0 and 8''(T) = O, but 8""'(T) # 0, can be obtained in a manner
similar to that used for obtaining the asymptotic expansion (41). The change of
variable @(T+1) = u20''/2 used below Eq. (24) and prior to Eq. (27) is replaced by
@(T+7) = u30"'//6, and Egs. (25) and (26a,b) become

T =u — cu2/6 + cyu¥/6 + ... with (45)
Cy = 04/20'"" and ¢y = [(64)2/40'"'—-00)/5)/20'"" . (46a,b)
Equations (30) and (31) then take the form
J = Aly + (A=cA/3))| + (A=A +C3A)/2 + ... @7
. Uy .
with J, = . exp[ive'''u3/6] ur du . (48)
—up
The change of variable vO'''u3/6 = t3 yields
I, = (6/v0'"")n+1)/3 I, (49)
o0
with I, = / i exp(it3) tha(t) dt . (50)
It may be verified that we have

Ip = T(1/3)/3V2 | 1; = i2n/37(1/3) and I, = 0, (S1a,be)

where '(1/3) = 2.6789... . Equations (22), (47), (49), (51a,bc) and (46a,b) finally yield
the asymptotic expansion
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I ~ 3-121(1/3) (6/v0'"'))/3 exp(iv®) [A + iAy/V1/3 + O(1/v)] as v > = (52)
where A, is defined as
A, = [24/3 / 31/6{r(1/3)}?] [(a'-a0®)/60'""')/(8""")/3], 1 . (53)

This asymptotic expansion defines the contribution of an interior point of stationary
phaset = T, witht; < T <t,, where we have §'(T) = 0 = 6''(T) but §'''(T) # 0.

BOW-AND-STERN CONTRIBUTION

Equations (4a), (19) and (20) show that the contribution of the bow and the stern
to the low-Froude-number asymptotic approximation to the integral K, is given by

A
K, ~ (iF2q/8.) [a, —iF2q(a,/0})' + O(F4)] exp(-ip8,/F2) AS .
B
By using Egs. (4), (7) and (8) we may then obtain
K ~ iF2q3 [Agexp(—ipxp/F2)—Agexp(—ipxg/F2)] , (54)

where xp g are the abscissae of the bow and the stern and the bow-and-stern
amplitude functions Apgg are defined as

Aps = 2n,A; + iF2q(Ay +A;) + O(FY , (55)

where the expression on the right side is evaluated at the bow or at the stern. In this
equation, the second-order amplitude functions A:Zt are given by

A3 0, = (u,a,t/0)) + iq(u,)?ay* , (56)
and the first-order amplitude function A, is defined as
-2n, A; = u,a; /0, + u_a; /6" (57)

for reasons that will become clear further on.

Equation (2b) yields y; = 0 since we have y = 0 at the bow or the stern.
Equation (9) thus becomes

u, = 1/(1-igx;) = u_. (58)
Equation (57) then yields

—2n,(1-iqx,)8, 8" A, = a; 8" +a; 6/, .
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By using Eqgs. (7), (10), (58) and the relation y; = O into the foregoing equation, we
may obtain

—2n,(1-iqx))0', 0" A; = yo'(A, 0 +A_0')/(1+€?)
+ 29 6,6 (B, +B_)/(1-igx;)2 + (C,0_ +C_0" )¢}
+ u(D,0" +D_0")4;/(1+€®) — 2ipx{yg, - (59)

By using the relation y; = 0 into Eqgs. (13a) and (11) we may obtain

A, = (1+pyy/u)(1-py/u)+e2 +iepyj/u = A, (60)

with ¢

X1yo/u . (61)
We then have

A,0_+A_0, = A, +6_) = 2x)A ,
where Eq. (7) was used. By using Eqs. (60) and (61) we may finally obtain

A0 +A_0, = 2x)[1+(x;2~p? +ipx;)(y§/u)?] . (62)
By using the relations y; = 0 and y, = 0, which follow from Eq. (2b) and the
condition y = 0 at the bow or the stern, in Eq. (13b) we may obtain B, = Fqtx,. We
then have

B,+B_=0. (63)

By using the relation y; = 0 into Eq. (13¢c) we may obtain

C, = Tt — (pyy/u—ie)lpxg/u—(pyj/wexxi/u(l +2)j ,
which becomes

C, = # — (1-igx;)(p2xfy/ud)/ (1 +€2)
by virtue of Eq. (61). By using Eq. (7) we may finally obtain

C,0. +C_0', = 2y4lt2—(1-igx,)(pxg/u)2/(1+¢€?)] . (64)
Equations (13d), (58), (7) and the relation y; = 0 yield

D, = igt(1+€2)8,/u(l-igx)) - (pyj/u)e(pyj/u—ie) .

11
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We then have

D,6”. +D_0, = —2pXx;x§(y/u-iqx,), (65)

where Egs. (7) and (61) were used.
By substituting Eqgs. (62), (63), (64) and (65) into Eq. (59) we may obtain

(1-igx,)(1 + e2)1/2[(xf/u)2 — (tys/u)2]A; = —[1+(x;2-p? +ipx, Xy{/u)xy/u
— [t2+(tx;y4/u)? — (1-iqx Xpx4/u)2lég/u + ipll—ipx,(yg/u)2lé;x¢/u , (66)

where Eqs. (7) and (61) and the relation n, = yj/u(l+¢2)12, given by Eq. (33a) in
[3], were used. Equations (31) and the equation below it in [3] yield

4’1 = xltx¢t —(txny —tyﬂx +Xltyﬂ7)¢d 0 (67)
where the relation y; = 0 was used. Furthermore, we have
£ = —n/(1-n2)V2 and 1+4¢? = 1/(1-n2), (68a,b)

as may be obtained from Eq. (33c) in [3}. Equations (39), (38a,b) and (33a,b) in [3]
also yield

—$o/u = ¢, (69a)
-xp/u = ty = n/(1-nV2, (69b)
_Y(I)/u = t'y = _nx/(l_nzz)l/z ’ (69C)

where Eq. (68b) was used. Equations (61) and (69¢) give

Xy = —n,/n,. (70)
Equation (67) becomes

¢; = —t,n,é./n,—$4/(1-n,2)1/2 ()

upon using Egs. (70) and (69b,c). By substituting Eqgs. (69a,b,c), (70) and (71) into Eq.
(66) we may obtain

—ty(t2 —p2,2)$, +ipty(ny +ipt,2n,)dg -

By using Egs. (6b), (69b,c) and the relations t,2+t,2 = 1 and n,22+n2+n,2 = 1 in
the foregoing expression we may obtain

12
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(ng+ign)A; = n,ny[1-ipn, (1, +iqny)/(1-n,2 —p?n,2)]
+ tod — ipnyt d4(1+p?ny(n, +iqn,)/(1-n,2 —p2n,?)] .

v Upon dividing by n, +iqn, we may finally obtain

A = ny(ny -y, +ipnyyg)/(ny +iqn,)
+ ipnyny(newq—q2n,)/[q¥(1-n2)-n,2] , (72)

where we have
(Wt ’ l"d) = (¢[ s ¢d)/(l_nzz)]/2 . (738,b)

The contribution of the bow and the stern to the far-field wave-amplitude
function K(t) is then given by Eqs. (54) and (55), where the first- and second-order
amplitude functions A, and A,* are defined by Eqs. (72) and (56), respectively.
Expression (56) for the second-order amplitude function is complex. However, Eq.
(72) defines the first-order amplitude function A; explicitly in terms of t, p =
(1+t2)1/2 and q = 1/p , the geometrical characteristics of the hull at the bow and the
stern — specifically, the unit outward hull-normal vector 'rf(nx,ny,nz) — and the
components ¢, and ¢4 of the disturbance velocity vector in the directions of the unit
hull-tangent vectors't and nxt.

. Equation (55) shows that the first-order approximation to the bow-or-stern
amplitude function Agg — given by 2n,A; — vanishes if n, = 0, that is if the
waterline has a cusp at the bow or the stern. Equation (72) shows that the first-order
approximation to the amplitude function Agg vanishes also if the bow or the stern is
round, since we then have ny = 0 and ¢, = —¢, = O by symmetry. It may thus be
seen that the contribution of the bow (or the stern) to the far-field wave-amplitude
function K(t) is of order F2 if n, = Oor n, = 0 at the bow (or the stern); that is, we
have

Kps = O(F?) if n,BS =0 or nyB-S =0. (74)

In the particular case when the hull surface is vertical at the bow or the stern, we
have n, = 0 and Eq. (72) becomes

Ay =t — ¢ - iqtyd,/(q® -t if n, = 0, (75)
. where the relations ¢g = —¢, and n, = t, were used. This yields

A=t — ¢ + OF) if n, =0, (76)
¢ as is indicated by the free-surface boundary condition ¢, = —F2§,, = O(F?).

In the limit t = o, we have q = 0 and Eq. (72) yields
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= ny — (;—$4nny/n)/(1-0,2)1/2 as t > 0, W)
lu the particular case t = 0, we have p = 1 = q and Eq. (72) becomes
Ay = ny(ny -y +ingyg)/(ny +iqn,) + iny(npyg—ny)/n, for t =0. (78)
Expression (78) is not valid if ny = 0, that is if the bow or the stern is round.
More generally, expression (72) is not valid if g2 = n,2/(1-n,2) = ty2 , that is if
te2 — t2,2 = 0. This special case, in which the bow or the stern is a point of

stationary phase, is considered further on.

STATIONARY-PHASE CONTRIBUTION

Equations (4), (4a), (7), (8), (19), (41) and (42) show that the contribution of the
point(s) of stationary phase may be expressed in the form

KnviFg 2K, (79)
in this expression, K, corresponds to the contribution of a point of the mean
waterline where the phase of the trigonometric function exp[—ip(xozttyo)/FZ] is
stationary, that is where we have

t = Tdxg/dyg = Fx/vG = Rty (80)

as may be obtained by using Eqgs. (69bc), and the notation § implies summation -
over all the points of stationary phase.
The stationary-phase contribution K, in Eq. (79) is given by

K, = +(2nr)!/2 A, exp[—i(pei/Fzz:snM)] , (81)
where r and ¢ are defined as

u2/q|xg’ #tyg'| (82)

..,
Il

€ = F sign (x§' tyg) ; (83)
furthermore, the amplitude-function A, is given by
A, = AT — FqgA;t + O(FY), (84)

where the first- and second-order amplitude functions A;* and A,* are defined as

A* = Fu,a t/u, (85)
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22uA,* = [(ua,2)765] + u,a =[5(8)")2/365~0,@)/4(8 )2
+ 2iq(uy)?a,* . (86)

In Egs. (82), (85) and (86), we have u = [(x))®+(y$)?1!/2, as is given by Eq. (12);
furthermore, we have 6, = x + ty,, as is indicated by Eq. (7), in Eqs. (81) and (86).

Equations (6a,b), (12), (69¢c) and the stationary-phase relation (80) yield
qQ = typ/u = N, = 1/p, (87)

where the condition xj < 0, which follows from Eq. (la), was used. By using Eqgs. (7),
(80) and (87) we may then obtain

pb, = :t(yotx—xoty)/tyz and (88)
r = [(x2+ )32/ |x¢'vo—vé' x4l » (89)

which shows that r is equal to the radius of curvature of the mean waterline at the
stationary-phase point (xg , o).

Let (a , ) be the (x , y) coordinates of the center of curvature of the mean
waterline at the point of stationary phase (x; , yg). We have

a = Xo+Yol(xP* +(¥0)2)/(X§'¥6 —¥'%0) -
Equations (83) and (80) yield
€ = F sign (X9'yo—Y0'X0)/¥0 -
We then have
€ = ¥ sign (a—xp) , (90)

which shows that ¢ takes the values —1 or +1 if the center of curvature
corresponding to the stationary-phase point (xy , ¥o) is upstream or downstream from
(Xg » Yo), respectively. Equation (80) shows that we have ¥ t, > 0 at a point of
stationary phase, since we have t 2 0 and t, 2 0. More precisely, Eq. (7) shows that
the points where the phases 6, and 6_ are stationary are located in the fore and aft
portions of the mean waterline, where we have t, < 0 and t, 2 0, respectively. If the
mean waterline is convex, we have a € X, and a 2 X in its fore and aft portions,
respectively. It may then be seen from Eq. (90) that ¢ is equal to +1 or —1 if the
mean waterline is convex or concave, respectively, at the point of stationary phase.

The relation —xj/u = [1—(yg/u)?]'/2, which follows from Eq. (12), and Egs. (87)
and (6a,b) yield

at = —xj/u =ty @
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where Eq. (69b) was used. By using Egs. (87) and (91) in Eq. (11) we may obtain

£ = +q(xgty) . ©92)
Equation (9) then becomes .

u, = 1/(1Fie) . (93)
Upon using Egs. (17), (93), (69a,bc) and (87), Eq. (85) becomes

(1+e)A [t = 2qe + (te—pyé, — ¢, - 94)
Equation (31) and the equation below it in [3] yield

¢1 = (xitx+yity)e — Dég, (95)
where D is defined as

D = tyny—tyn, +(Xjty -y tn, . %6)

Equations (69b,), the relation t,(2 + ty2 = 1 and Eqgs. (11) and (68a,b) show that we
have

D = (1+6)V2 g
Upon using Egs. (97), (87) and (91) in Eq. (95) we may obtain
$1 = qltx Ty )é, — (1+e2)V2, . (98)

It follows from Egs. (2a,b) that the vector 9x/9z = (xq , ¥y » 1) is tangent to the
hull surface. We then have n- 8x7dz = 0, that is

Xy + yny +n, =0. %9
This equation yields
X; = ®y; - n,/n,, (100)

where Eqs. (69b,c) and (80) were used. By using Eqgs. (100) and (6a,b) in Eq. (98) we
may obtain

—$) = (qtn/n,xpy )4, + (1+€2)1/2, . - (101)
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Equations (94) and (101) then yield

(1+e)A* = 2qe + t(gn,/n,xe)d, + (1+62)1/24, . (102)
Equations (68a), (69¢c) and (87) show that we have

qn,/n, e = 0.
Equation (102) finally becomes

A = —nn, + (1-n,2)V2, , (103)

where Eqgs. (68a,b), (69c) and (87) were used.
Upon using Eq. (88) we may express Eq. (81) in the form

K. = 2nmr)!/2 A, exp[Fi{(yoty —Xoty)/t,?F? —en/4}] ; o

in this expression for the contribution of a point of stationary phase (x; , yp), which
is defined by Eq. (80), r represents the radius of curvature of the mean waterline at
the point (xg , yo), € is equal to +1 or —1 if the mean waterline is convex or concave,
respectively, at (xq , yo) and A, is the amplitude function defined by Egs. (84), (86)
and (103).

Expression (86) for the second-order amplitude function A* is a complex one.
However, Eq. (103) defines the first-order amplitude function A* explicitly in terms
of the geometrical characteristics of the hull — specifically, the components n, and n,
of the unit outward normal vector 1 to the hull — and the velocity component ¢4 in
the direction of the downward tangential unit vector nXt at the point of stationary
phase.

Equations (84) and (103) show that in the particular case when the hull surface is
vertical at the point of stationary phase, we have

A, = —-¢,+ O(F?) if n, =0. (105)
The free-surface condition ¢, = —F2¢,, = O(F2) then yields
A, = OF? if n, =0. (106)

The summation in expression (79) for the contribution of the point(s) of
stationary phase is extended to any point of the mean waterline where the phases of
the trigonometric functions exp[—ip(xg=tyo)/F?] are stationary, that is where Eq. (80)
holds. The number of stationary points, and their positions along the waterline,
depend on the value of t and on the shape of the waterline. For instance, for the
simple case of a hull with waterline consisting of a sharp-ended parabolic bow region
1/4 € x € 1/2 defined by the equation y = 4bx(1—-2x), where b denotes the ship’s
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beam/length ratio, a straight parallel midbody region —1/4 € x € 1/4, and a round-
ended elliptic stern region —1/2 € x € —1/4 defined by the equation
y = b[-2x(1+2x)]!/2, there is one point of stationary phase in the stern region given
by x = —[1+1/(1+4b2%t2)!72)/4, so that we have ~1/2 € x € —-1/4 for0 € t €
with x = —1/2ast = 0 and x = -1/4 as t = o, and one point of stationary phase
in the bow region given by x = (1+1/4bt)/4 for 1/4b € t € o, so that we have 1/2
2x21/4for1/4b <t € o withx =+ 1/2ast = 1/dband x = 1/4 as t = oo, We
thus have one point of stationary phase in the stern region for 0 € t < 1/4b and two
points of stationary phase, one in the stern region and one in the bow region, for
1/4b € t € =, The two points of stationary phase approach the shoulders x = +1/4,
where dy/dx = 0, in the limit t = oo,

Expression (104) is not valid at a point of stationary phase of order two, for
which both the first and the second derivatives of the phase vanish. In this case, we
thus have

Xoxtyg =0 and xp’ £tyy =0.

These two conditions can be satisfied simultaneously at a point (xq , yo) where we
have

[T

X3'Yo—Yo'xo = 0,

that is at a point of inflexion of the mean waterline, at which the radius of curvature
is infinite as may be seen from Eqs. (89) or (82). This particular case is considered
further on.

SUMMARY OF RESULTS

Equations (79) and (54) yield the following low-Froude-number asymptotic
expansion for the far-field wave-amplitude function K(t):

K@) ~ iFg? [ 2 K, + F(Kp—Kg)] as F =0, (107)
where F is the Froude_number defined by Eq. (5), that is:

F = U/(gL)}/2, (108)
q is given by Eqgs. (6a,bc), i.e:

q=1/p with p=(1+t?)/2 and 0<q<1, (109a,b,c)

and K,, Kpg and Kg represent the contributions of the point(s) of stationary phase on
the mean waterline, and of the bow and the stern, respectively.

The notation Z implies summation over all the points of the mean waterline
where the phases of the trigonometric functions exp[—ip(xtty)/F2] are stationary, and
the terms K, correspond to the contributions of the stationary points of the phases

18




T

xzty, respectively. These points of stationary phase are defined by the equivalent
relations (80), that is:

dy/dx = t,/t, = Fl/, (110)

where t, and t, are the components of the unit vector t tangent to the mean waterline
and pointing towards the bow. The number of points of stationary phase, and their
positions on the mean waterline, depend on the value of t and on the shape of the
waterline. We usually have one or two points of stationary phase for typical hull
forms, as was shown in the previous section.

The stationary-phase contribution K, is given by Eq. (104), that is:
K, = #(2n)V2 A, exp[Fi{(yty —xt)/t,2F2 - en/4}] ; (111)

in this expression, r represents the radius of curvature of the mean waterline at the
point of stationary phase (x , y), € is equal to +1 or —1 if the mean waterline is
convex or concave, respectively, at (x , y) and A, is the amplitude function defined by
Eq. (84), that is:

A, = A - FlqA,* + O(FY). (112)
The first-order amplitude function A, is given by Eq. (103), i.e.:

A = -nn, + (1-n,2)172¢,, (113)
where Ti(n, , ny, n,) is the unit outward normal vector to the hull and ¢ is the
velocity component in the direction of the downward tangential vector Xt to the
hull. The second-order amplitude function A,* in Eq. (112) is given by a complex
expression, namely Eq. (86), where 6, , u, , u, a;* and a,* are defined by Egs. (7),
9), (12), (17) and (14). Equations (112) and (113) show that in the particular case
when the hull surface is vertical at the point of stationary phase, we have

A, = -4, + O(F) = O(F?) if n, = 0. (114)

The bow and stern contributions Kgg in the asymptotic approximation (107) are
defined by Eq. (54), that is:

Kps = Aps exp(—ip xgs/F?), (115)

where xg g are the abscissae of the bow and the stern, respectively, and the amplitude
functions Apg are defined by Eq. (55), ie.

Ags = 2n,A| + iF2q(A5 +A; ) + O(F%) . (116)
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The first-order amplitude function A, is given by Eq. (72), that is
A; = ngny—y +ipnyy)/(n,+iqn,) + ipnny(nwy—a2n)/[q¥(1-n2)-n2 ,  (117)

where (; , wo) = (4 , $g)/A-n2)V2 (118a,b)

and ¢, is the velocity component in the direction of the tangent vector t to the mean
waterline. The second-order amplitude functions A,* in Eq. (116) are given by a
complex expression, namely Eq. (56), where 8, , u, , a;* and a,* are defined by Egs.
(M), (9), (10) and (14). Equations (116) and (117) show that we have n,A; = 0 and
therefore

Ags = O(F?) if nBS =0 or nBS =0, (119)

that is, if the bow or the stern is either cusped or round.

The asymptotic approximation (107) and Eqgs. (111)-(114) and (115)-(119) defining
the contributions of the point(s) of stationary phase on the waterline and of the bow
and the stern, respectively, show that the low-Froude-number behavior of the far-field
wave-amplitude function is strongly influenced by the shape of the hull in the vicinity
of the mean free surface. More precisely, for a vzlue of t for which there is one (or
more) point of stationary phase on the mean waterline where the hull has flare, the
contribution of this stationary-phase point dominates the contributions of the bow
and the stern and we have K(t) = O(F). On the other hand, for a value of t for C
which either there corresponds no point of stationary phase or the hull has no flare
(i.e. is vertical) at the point(s) of stationary phase, the contributions of the bow and
the stern are dominant, and we have K(t) = O(F2), except if both the bow and the
stern are either cusped or round. In the latter case, the contribution of the point(s) of
stationary phase, where the hull is assumed to be vertical, is dominant and we have
K@) = O(F3).

The wave resistance of a ship is defined in terms of the far-field wave-amplitude
function by means of the well-known Havelock integral

o0
nR/QU2L? = fo WK®I2p dt . (120)

The low-Froude-number asymptotic approximation (107) then shows that the
nondimensional wave-resistance coefficient is O(F2) for a ship form with a region of
flare, O(F4) for a ship form that is vertical (wall sided) everywhere along its mean
waterline and has either a bow or a stern (or both) that is neither cusped nor round,
and O(FS) for an everywhere wall-sided ship form with both bow and stern that are
either cusped or round.
In the case of a ship form that has flare over a portion of its waterline and is
wall sided elsewhere, the far-field wave-amplitude function K(t) is O(F) for the range .
of values of t for which there corresponds a point of stationary phase within the
region of flare but X(t) is O(F?) for other values of t, for which the corresponding

i
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points of stationary phase fall outside the region of flare. If the portion of the
waterline where the ship has flare is of very small extent, the corresponding range of
values of t for which the function K(t) is O(F) is also small, so that the function K(t)
may exhibit a sharp peak in the limit F = 0. The amplitudes of the transverse and
divergent waves in the far-field Kelvin wake of a ship are directly related to the far-
field wave-amplitude function K(t) and therefore may also exhibit a sharp peak at an
angle from the track of the ship smaller than the Kelvin cusp angle of 19° 1/2, as is
shown in Noblesse [2].

SPECIAL CASES

As was already noted, the asymptotic expansion (107) is not uniformly valid for
all values of t. In particular, this expansion is not valid in the vicinity of the values of
t for which the bow or the stern is a point of stationary phase, that is for t = tg or
tg , with

tp = —(@x/dy)pow = ~(tx/tpow » (121a)
ts = @x/dYgern = (t/tsiern - (121b)

Equations (41) and (43) show that the stationary-phase and bow contributions
K, + FKgin Eq. (107) become K /2 + O(F) for the special value t = tg. The
stationary-rhase and stern contributions K_ —~ FKg in Eq. (107) likewise become
K_/2 + O(F) for t = tg. We thus have

K, + FKg=~K,/2 + OF) if t =1y, (122a)
K_ - FKg—~ K_/2 + O(F) if t = tg, (122b)

where K, is given by Eqgs. (111)-(113).
Equations (122a,b) and (111)-(113) yield

K. = FKgg = #(nr/2)1/2 A exp[ii(x/tyF2+n/4)] + O(F) if t = tgg, (123)

where y and ¢ in Eq. (111) were taken equal to 0 and 1, respectively (since the
waterline must be convex at the bow and at the stern), and the amplitude function A
is given by

A= —nn, + (1-n2)V2 ¢4 . (124)

As was noted previously, the asymptotic expansion (107) is also not valid in the
vicinity of a point of stationary phase for which the mean waterline has an inflexion
point; this corresponds to the case when both the first derivative and the second
derivative of the phase vanish, that is we have both xg + tyg = 0 and xy' = tyy' = 0,
which yields xg'yy — y4'xg = 0, i.e. r = 0 in Eq. (111).
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An expression for the stationary-phase contribution K, in Eq. (107) valid in this
special case can be obtained from Eq. (52). Specifically, expression (111) for the
stationary-phase contribution becomes

K, = +F-1733-121(1/3) (60)!/3 A, exp[::i(ytx—xty)/tyzel , (125)
where g is defined as

e = [+ Uly'(y'x""'-x'y"") , (126)
and the amplitude function A, is given by

A, = A + OF3), (127)
with A, given by Eq. (113).

CONTRIBUTION OF THE NONLINEAR TERMS IN THE
FREE-SURFACE BOUNDARY CONDITION

The far-field wave-amplitude function K(t) considered in the foregoing
corresponds to the usual Neumann-Kelvin theory, in which the free-surface boundary
condition is linearized. The far-field wave-amplitude function, K'(t) say, associated
with the generalized Neumann-Kelvin theory in which the nonlinear terms in the free-
surface boundary condition are taken into account is defined in Noblesse {1] by an
expression of the form

K'(t) = K@) + k(t), (128)

where k(t) corresponds to the nonlinear terms in the free-surface boundary condition.
More precisely, Eqs. (36) and (2) in [1] show that, for a ship with port and starboard
symmetry, the function k(t) is given by

k(t) = k.(t) + k_(t) with (129)
ko () = ff; exp[—i(x2ty)/qF2] x(¢) dxdy , (130)
where f represents the positive half of the mean free surface and x(¢) represents the
nonlinear terms in the free-surface boundary condition given by
x($) = [34/3x—(V$)2/2] d(d¢/3z+F232¢/3x2)/ dz
— 3(V$)2/ax + V-V(V)2/2 + O(F2$3). (131)
Let b represent the beam/length ratio of the mean wetted hull and let us assume

for simplicity that a line parallel to the x axis in the mean free-surface plane z = 0,
defined by the equation y = n with 0 € n < b/2, intersects the mean waterline at
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only two points, defined by x = &g in the stern region and x = £g in the bow region,
say (the case when a line y = n intersects the mean waterline at more than two points

v yields a result identical to that obtained below and may be treated similarly).
Equation (130) then yields

'3 k,(t) = /;) 2 dy exp(Fity/qF2) [ /: iso exp(—ix/qF2) x(¢) dx
+ / ;Boo exp( -ix/qF?) x(¢)dx]
+ 00 00
+/;)/2 dy exp(Iity/qFZ)/ o EXP( -ix/qF2) y(¢) dx .

The inner integrals (with respect to x) in the foregoing expression are Fourier
integrals for which asymptotic expansions, valid in the limit gF2 - 0, can easily be
obtained, e.g., from Egs. (19) and (20) or from Egs. (2) and (3) p. 47 in Erdélyi [4],
provided that the free-surface nonlinear term x(9) and its x derivatives vanish as |x| -
oo, which is presumed. We may then obtain

, b/2 : ,
ky(t) ~ quq[ fo expl—i(§s2ty)/qF?) [x—iFZqyy + O(F4)) dy

b/2 : :
- /(-) exp—i(Egxty)/qF?] [x—iF2qy, + O(F4)]gB dy] ,

) which may be expressed in the form of the line integral

stern
k,(t) ~ iF2q /bow exp[—i(x+ty)/qF2] [x —iF2qy, + O(F4) tydl , (132)
where the relation dy = —tydl was used.
By using the parametric representation (1a,b), which yields tydl = -ygdA, we may

express the waterline integral (132) in the form
A
k.(t) v —iF2q /l . exp[ —i(xg+tyg)/aF?] [x —iF2qy, + O(F4)] y4dA . (133)
B

Equations (128) and (4)-(8) then show that the far-field wave-amplitude function K'(t)
in the generalized Neumann-Kelvin theory may be expressed in the form

K'(t)~ q2(K, + K_) as F—~0 with (134)
Ki(t) ~ / }i exp| —i(xg*tyo)/qF2] a) di , (135)
where the generalized amplitude function aj is given by
a, = u.ay - iFqliq(u,)? a3 + plyjx] + O(F%). (136)
The low-Froude-number asymptotic expansion (134)-(136) shows that the
® contribution of the nonlinear term yx in the free-surface boundary condition in the

generalized amplitude function a; is O(F?), which is asymptotically negligible in
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comparison with the O(1) term u,aj given by the linear Neumann-Kelvin theory
except if utait = (. More precisely, Eq. (136) shows that the low-Froude-number
asymptotic expansion obtained in the foregoing for the wave-amplitude function K(t)
immediately yields a corresponding expansion for the generalized wave-amplitude
function K'(t). Specifically, the asymptotic expansion for K(t) given by Egs. (107)-(119)
is valid if K(t) on the left side of Eq. (107) is replaced by K'(t) and if the term
iq(ut)"af in expressions (56) and (86) for the second-order amplitude functions Af is
replaced by the term iq(u,)2a,* + p2ygx(4).

This generalized asymptotic expansion for the function K'(t) shows that we have
k(t) = O(F3), as may be seen from Egs. (107), (111) and (112). This contribution of
the nonlinear terms in the free-surface boundary condition must be compared with
the function K(t) corresponding to the linear Neumann-Kelvin theory. Specifically, we
have K(t) = O(F) for a ship form having a region of flare, K(t) = O(F?) for a ship
form that is wall sided everywhere and has either a bow or a stern (or both) that is
neither cusped nor round, and K(t) = O(F3) for a wall-sided ship form with both
bow and stern that are either cusped or round. The contribution of the nonlinear
terms in the free-surface boundary condition is then asymptotically negligible for ship
forms having a region of flare or a sharp wedge-like bow or/and stern, which is the
case for a majority of ships, nctably naval ships.
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